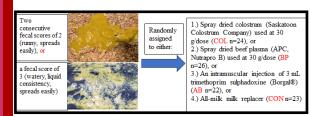
Abstract 1730W; Ottawa 2023 ADSA Annual Meeting

Evaluation of differing interventions at the onset of neonatal calf diarrhea.

D. Wood¹, R. Blome¹, A. Keunen², B. Keunen², L. Ribeiro¹, and D. Renaud³. Animix¹, Juneau, WI, Mapleview Agri Ltd.², Palmerston, ON, Canada, Population Medicine, University of Guelph³, Guelph, ON, Canada.

Introduction


Studies show spray dried plasma reduces disease symptoms when calves are challenged with E coli (Nollet, et. al), coronavirus (Arthington, et al.), and C parvum (Hunt, et al.). Spray dried colostrum has also shown merit during enteric disease challenge (Berge, et. al.). No studies have compared both of these functional protein sources to a common antibiotic regiment to treat diarrhea in young calves.

Objective

The objective of this study was to investigate strategies to treat diarrhea.

Material and Methods

Male calves (n=160) sourced from farms and auctions (BW=52.3 ±4.1 kg) were randomly assigned to receive one of 4 treatment regiments commencing at the on-set of a fecal score of 3 or two consecutive fecal scores of 2 (Renaud, 2020):

Images: courtesy of Veal Farmers of Ontario

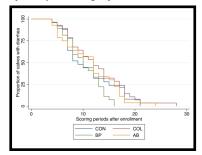
- The respective functional protein source was formulated into the non-med, no additive 26:20 all-milk CMR at the expense of milk protein.
- ⇒ Respective treatment was administered as a substitute for 1 L of the regular CMR for 10 consecutive feedings (5 days) after enrollment in the study.
- ⇒ If a calf refused his liter of test diet it was tubed, however, if a calf refused his additional feeding of the standard CMR it was recorded as a feed refusal.

⇒ All milk replacer (including test diets) were administered at 130 g solids/L.

CMR was fed 2x/d in a step-up, step-down fashion (37.8 kg over 56 d) starting at 5 L/d for the first 2 weeks. Texturized starter (20% CP, 4% straw) was offered ad lib. Calves were housed individually in a mechanically ventilated grain-fed veal facility in On-

Measures:

- ⇒ Serum total protein at arrival (refractometer)
- Medical treatments, mortality, milk refusals
- Individual body weight weekly
- Individual fecal score 2x/d (Renaud, 2020)
- ⇒ Individual respiratory score 2x/d (Love, 2014)


Statistical analysis:

- ⇒ Conducted in Stata 17 (StataCorp, TX)
- ⇒ Cox proportion hazard model used to measure mortality and morbidity
- ⇒ Linear regression model to evaluate ADG
- Generalized linear model to evaluate fecal and respiratory scores

Results & Conclusion

Of the 160 calves placed, 67.5% experienced sufficient diarrhea symptoms to enter the study. No differences were found between treatment groups with regard to source (P=0.25), crossbred calves (n=5, P=0.47, the balance were Holstein), serum total protein (P=0.27), incidence of failed transfer of passive immunity (38.9% of all calves; P=0.17), or mean days from arrival to enrollment (5.1 \pm 1.7 d; P=0.92). Using a log-rank test of survivor function there was no differences in mortality (P=0.76).

Figure 1. Kaplan Meier Survival Curve of Resolution of diarrhea over the experimental period by treatment group

Conclusions:

- No statistical differences in ADG or mortality
- Bovine plasma group tended faster resolution of diarrhea vs. control and significantly ↓ number of calves requiring 2nd scour treatment
- Antimicrobial group tended ↓ 1st treatment for respiratory disease and significantly fewer calves requiring 2nd treatment for respiratory
- Antimicrobial group ↑ 42 d body weight vs. control
- Approximate cash outlay (US\$): 300 g Saskatoon Colostrum Powder \$22.40, 300 g APC Nutrapro B plasma \$1.65; 15 ml Borgal® trimethoprim sulphadoxine \$1.12. Additional protein value of 159 and 234 g from colostrum and plasma respectively. Colostrum also provides 63 g of fat.

Possible follow-up studies:

- Supplement functional protein prior to diarrheic event
- Increase functional protein dose

·	COL	BP	AB	CON
Number (n) of calves enrolled	28	27	28	25
Enrollment (diarrhea onset) growth day	5	5	5.3	5.1
Mortality (n)	2	2	4	3
Arrival Serum Total Protein (g/dL)	5.17	5.16	5.42	5.28
Trimethroprim sulfa (% 1st scour treat)	89.3%	81.5%	100%	84.0%
Of diarrhea treated, % 2nd treat	12% ^a	0% ^b	28.6% ^a	14.3% ^a
% treated for respiratory disease	67.9% ^X	63% ^x	42.9% ^y	64% ^X
Of Respiratory treated, % 2nd treat.	63.2% ^a	79% ^a	25% ^b	58.8% ^a
Of Respiratory treated 2x, % 3rd treat	75.0%	53.3%	100.0%	50.0%
Body weight (BW) at enrollment (kg)	52.7	52.3	52.4	52.2
42-d post enrollment BW (kg)	79.1 ^a	79.9 ^a	83.1 ^b	79.7 ^a
56-d post enrollment BW (kg)	95.9	96.3	98.5	96.3
28-d ADG post enrollment (kg)	0.58 ±0.17	0.53 ±0.16	0.61 ±0.20	0.58 ±0.13
56-d ADG post enrollment (kg)	0.77 ±0.24	0.79 ±0.29	0.83 ±0.20	0.79 ±0.24
a,b Means within a row different superscr				
X.V				

Means within a row different superscripts differ (P≤0.10) reatment groups in study (130 g/L). Calves were enrolled at barn placement and

reatment administered at on-set of diarrhea (2 days fecal score 2 or 1 day fecal score 3): .: CMR formulated to 26% CP & 20% fat with spray dried colostrum (Saskatoon Colostrum Company) includec at 23% of formula (30 g/fdg)

: CMR formulated to 26% CP & 20% fat with spray dried bovine plasma (APC, Nutrapro B) included

N: CMR same as AB treatment group but no antibiotic

at 23% of the formula (30g/fdg) AB: CMR formulated to 26% CP & 20% fat with no functional proteins + intramuscularly injection of trimethroprin sulphadoxine (Borgal®) at a dose of 3 mL/45 kg 1x/d for 5 consecutive days

Cox proportional hazard model evaluating resolution of diarrhea							
(defined as a return to two consecutive fecal scores of 0 or 1)							
Treatment	group	Hazard ratio	P	95% Conf. Int.			
CON		Referent					
COL (Colo	ostrum)	0.95	0.87	0.53 to 1.71			
BP (bovine plasma)		1.65	0.09	0.93 to 2.94			
AB (antibiotic)		1.12	0.69	0.63 to 1.98			

References:

Arthington JD, Jaynes CA, Tyler HD, et al. The use of bovine serum protein as an oral support therapy following coronavirus challenge in calves. J Dairy Sci 2002; 85:1249–54. https://doi.org/10.3168/jds.S0022-0302(02) 74189-1.

Berge ACB, Besser TE, Moore DA, et al. Evaluation of the effects of oral colostrum supplementation during the first fourteen days on the health and performance of preweaned calves. J Dairy Sci 2009; 92:286–95.

Hunt E, Qiang F, Armstrong M, et al. Oral bovine serum concentrate improves cryptosporidial enteritis in calves. Pediatr Res 2002;51:370–6. https://doi.org/10.1203/00006450-200203000-00017.

Love WJ, Lehenbauer TW, Kass PH, Van Eenennaam AL, and Aly SS. 2014. Development of a novel clinical scoring system for on-farm diagnosis of bovine respiratory disease in pre-weaned dairy calves. PeerJ 2:e238. https://doi.org/10.7717/peerj.238.

Nollet H, Laevens H, Deprez P, et al. The use of non-immune plasma powder in the prophylaxis of neonatal Escherichia coli diarrhea in calves. Am J Vet Med 1999;46:185–96. https://doi.org/10.1046/j.1439-0442.1999.00208.x

Renaud DL., Buss L, Wilms JN, and Steele MA. 2020. Technical note: Is fecal consistency scoring an accurate measure of fecal dry matter in dairy calves. J. Dairy Sci. 103:10709–10714. https://doi.org/10.3168/jds.2020 - 18907.